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Abstract:  — In order to change the entire chip design methodology, the Very Large-Scale Integration (VLSI) sector has begun 

implementing machine learning (ML) techniques in design automation. The time and effort required to comprehend and process the 

data within and across different abstraction levels via automated learning algorithms is reduced when machine learning techniques, such 

as reinforcement learning, are used in VLSI design and placement. It thus increases IC yield, shortens production lead times, and ensures 

accurate placement. In light of this, a thorough examination of numerous Reinforcement Learning-related aspects in the context of VLSI 

placement has been carried out. We have also considered the recent machine learning and deep learning techniques incorporated in 

VLSI. 
 

 

Index Terms - Reinforcement learning, machine learning, algorithms, placement, design. 

I. INTRODUCTION 

 

         The process of integrating thousands of transistors onto a semiconductor chip can be described as very large-scale integration. 

VLSI first appeared in the 1970s, when advanced level processor chips were in their infancy. The most common VLSI devices are 

microprocessors and microcontrollers. 

         As previously indicated, the term "Very Large-Scale Integration" (VLSI) was first used to describe integrated circuits in the 1970s. 

The amazing expansion of the electronics industry in terms of sophistication and the volume of devices produced annually has been 

made possible by numerous developments in the field of VLSI. The existence of the chip design industry has led to significant growth 

in the domains of telecommunications, control systems, consumer electronics, high performance computing, missiles, etc [1]. These 

applications experience processing speeds and application access that are unheard of, and VLSI makes this all feasible. As long as there 

are inventions and a very fast rate of growth in the VLSI sector to support those inventions, there will always be a market for these 

products. 

Due to the large cell count and great accuracy in how the cells are put in a chip that are required for Very Large-Scale Integration, the 

idea of traditional design that is done manually is rendered obsolete [2]. Any designer would find it extremely difficult to complete a 

project of this size without the aid of technology. Electronic Design Automation (EDA) tools were introduced as a result, assisting 

designers in increasing design and verification efficiency. The development of several tools for each level of VLSI is the main goal of 

EDA. However, having EDA tools alone is insufficient for design because it necessitates a fundamental understanding of VLSI and its 

characteristics. This may aid in bridging the gap between specification and chip production. The creators ought to be able to formulate 

a problem and an algorithm for the same problem and then develop a program to automate physical design on a computer.  

The stage that handles the placement and routing of a chip in an IC design is called Physical Design, which is at the tail end of the VLSI 

flow. The circuit representations from the earlier phases are transformed into shapes, and these shapes are subsequently formed into 

various metal layers. An IC Layout is the name given to this geometric illustration. 

A VLSI circuit's design must go through several stages because of its complexity. Placement is carried out after logic synthesis but 

before CTS and routing in accordance with the ASIC Design flow. Therefore, it is understood that each standard cell and macro has a 

specific placement on the chip. The placement stage is where this intricate procedure of inserting about a million cells and several 

macros takes place [3]. 

The rows are first introduced so that the standard cells can be placed before Placement. Additionally, the common cells are positioned 

in these rows during placement. It is necessary to take timing requirements and net lengths into account while positioning the standard 

cells [4] Otherwise, many iterative loops must be performed to enhance the current location, which may or may not enhance the timing. 

Runtime will once more suffer as a result of this. 

Reinforcement Machine learning includes learning. Agents learn about reward and punishment systems on their own in this situation 

[18]. It's about using observations to determine the best course of action or path to achieve the greatest rewards and the least amount of 

punishment. 
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This paper is divided into the subsequent sections, where Section I gives the Introduction, Section II depicts the extensive Literature 

Review done so far in Physical Design, Section III includes a summarization of papers in tabular form and Section IV contains the 

conclusion. 
 

II. LITERATURE REVIEW 

An immense amount of research has been done regarding the implementation of ML algorithms in the VLSI 

placement. This review takes into consideration various ML models, Reinforcement learning techniques, deep RL techniques and 

algorithms implemented to boost the performance of placement tools, optimize, and effortlessly automate the placement process in the 

PD flow.  

 

According to Z. Wang et al. [1] reward and state transition functions of dynamic settings may change over time, which is why this work 

addresses the incremental RL problem in continuous spaces for these environments. The aim was to switch from the initially learned 

policy in the original environment to a new one whenever the environment changes. With the incremental learning process, authors present 

a two-step strategy to increase adaptability: policy relaxation and importance weighting. A proper exploration of the new environment is 

the first goal of the policy relaxation mechanism, which achieves this by lowering the behavior expectations for a few learning episodes 

to a consistent level. This results in a better long-term adaption by reducing the conflict between the new knowledge and the previously 

held beliefs, they're adapted to. The second step is the application of an importance weighting technique based on the finding that episodes 

with greater returns are more consistent with the new environment and therefore contain more novel information. In order to encourage 

the prior optimal policy to be quickly replaced by a new one that works in the new environment, they provide larger weights during 

parameter update to episodes that contain more new information. Traditional navigation challenges and intricate locomotion tasks with 

various configurations were the subjects of experiments. The outcomes demonstrated that the suggested approach could manage a variety 

of dynamic situations and deliver a substantially faster learning process. 

 A. Agnesina et al. [2] the physical design flow depends on the placement's quality. A human engineer often devotes a significant amount 

of time to fine-tuning the various settings of a commercial placer in order to meet PPA goals. In order to optimize the placement settings 

of a commercial EDA tool, this study suggests a deep reinforcement learning (RL) architecture. Researchers create an autonomous agent 

that is taught exclusively by RL via self-search and learns to tune parameters optimally without the assistance of humans or domain 

expertise. Researchers combine manually created characteristics from graph topology theory with graph embeddings produced by 

unsupervised Graph Neural Networks to generalize to unseen netlists. The sparsity of the data and the latency of the placement runs are 

overcome by their RL algorithms. When compared to a human engineer and a state-of-the-art tool auto-tuner, their trained RL agent 
improves wirelength on unseen netlists by up to 11% and 2.5%, respectively, in just one placement iteration (20X and 50X less iteration). 

A. Mansoor et al. [3] have implemented unique placement method (RS3DPlace) based on Simulated Annealing (SA) and Reinforcement 

Learning (RL), which is the first machine learning strategy for Monolithic 3D ICs (M3D). RS3DPlace rapidly calculates a draught 

solution using RL's capacity for learning, which SA then uses to produce a better final solution. Although the gate-level M3D design 

style is the focus of the present implementation, it may be applied to other M3D design styles as well as other 2D and 3D physical design 

optimization issues. We evaluated RS3DPlace for 8-128-bit MUX-based right arithmetic shifter circuits and a circuit with non-regular 

connections in comparison to Mux-based shifters, which are optimized in 2- layered M3D technology, to demonstrate the efficiency of 

the technique. Additionally, according to experimental findings, the total cost function is on average 16% better than it is with Random 

Initialized SA (Rand SA). 

Mrinal Mathur [4] demonstrates that solving time-consuming placement-based activities requires focusing on complicated, industry-

wide problems with a big impact. They provide a fresh RL-based method for placing the macros quickly and effectively to maximize 

PPA values. Designers demonstrate that they have produced placements with improved outcomes and outperformed state-of-the-art 

baselines. These findings demonstrate that their agent reduced wirelength without incurring any additional training costs and generalized 

well when compared to EDA technologies. 

   S. F. Almeida et al. [5] the placement engine may generate an impractical routing solution as a result of the search for wirelength 

optimization, necessitating the repetition of earlier processes and raising the total project cost. Due of its cheap computing cost, 

placement algorithms have historically used pin density to determine routability. This has turned out to be inefficient at advanced 

technology nodes, nevertheless, because of tighter production regulations and complicated standard cell layouts. Although routeability 

is a topic that many placement strategies aim to solve, the issue is that these models rely on certain heuristics or designer expertise. As 

a result, researchers provide a methodology based on machine learning for addressing routeability during the placement stage. 

     According to R. Manimegalai et al. [6] for the Placement and Routing problem on 3D-FPGA, a Reinforcement Learning-based 

solution based on Support Vector Machines is proposed in this study. their experimental findings on typical benchmark circuits show 

that their method leads in efficient routing with reduced connection length and channel width. The performance of the RL and SVM 

combination is very good, even with only a few training trajectories. Fixed routing method is assumed in this paper. RL methods can 

also be used to enhance the current routing algorithm. For the Placement and Routing problem on 3D-FPGA, a Reinforcement Learning-

based solution based on Support Vector Machines is proposed in this study. their experimental findings on typical benchmark circuits 

show that their method leads in efficient routing with reduced connection length and channel width. The performance of the RL and 

SVM combination is very good, even with only a few training trajectories. Fixed routing method is assumed in this paper. RL methods 

can also be used to enhance the current routing algorithm. 

     R. Cheng et al [7] when it comes to macro placement, reinforcement learning is been used, but when it comes to standard cell 

placement, which is more laborious and time-consuming, a more efficient gradient-based optimization technique is used and effectively 

integrate this technique into the end-to-end pipeline. Researchers go one step farther and create previously unresearched joint positioning 

and routing using reinforcement learning. A two-view based embedding model is created in particular to combine global and local 

information, and distillation is created to enhance exploration. This solver's effectiveness is demonstrated by experimental results on 

public benchmarks. Due to the GNN's scaling problem and the huge action space for reinforcement learning, this model can only place 

a moderate amount of macros at the moment.  
     L. Bai et al. [8] after a floorplan has been constructed, machine learning algorithms for time prediction are used in this study. The 

parameters from the gate-level netlist, constraint files, and floorplan files are examined to choose and abstract the features for the models. 

We investigate the traditional machine learning techniques including neural networks, support vector machines (SVM), and ensemble 
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machine learning. To forecast the time of SoC, the appropriate regression models are used. The suggested concept is validated using the 

testcase created by open-source IP core. The outcomes demonstrate that, among the learning models tested in this paper, the hybrid 

ensemble learning model has the greatest prediction performance. 

   E. C. Barboza et al. [9] have introduces a pre-routing timing prediction technique based on machine learning. According to 

experimental findings, it can achieve accuracy close to post-routing sign-off analysis. It decreases the false positive rate in detecting 

timing violations by around 2/3 compared to a commercial pre-routing time estimation tool. 

   Mozhzhukhina A [10] The use of contemporary artificial intelligence technologies in the field of microcircuit design is discussed in 

this article. It supports the need for and provides a brief explanation of some artificial intelligence techniques and technologies, such as 

deep reinforcement learning (DRL) in connection with formalizing the task as a Markov decision process and neural networks in 

connection with representing LSI as a weighted graph with feature vectors. Also included is a breakdown of the most popular neural 

network designs. Along with a brief explanation of the steps, a technique for positioning LSI elements at the stage of topological design 

based on DRL employing graph neural networks (GNN) is also described. 

  The characteristics in this machine learning model include placement-specific data .and the clogged global route. Y. -Y. Huang et al. 

[11] use the model to forecast where the precise routing violations will be, input that knowledge back into the placement algorithm, and 

then provide a new placement result. According to experimental findings, the suggested techniques can significantly reduce the 

frequency of DRC breaches as compared to the outcome of the original placer. 

  In order to accommodate objective functions with inference-time changing weights, Fu-Chieh [12] suggests flexible multiple-objective 

reinforcement learning (MORL) with a single pretrained model. Their macro placement outcomes demonstrate that MORL may 

efficiently produce the Pareto frontier of many objectives. 

  P. Esmaeili et al. [13] have demonstrated how RL may be applied to dramatically shorten DP runtimes while retaining Quality-of-

Result (QoR). Designers create three different RL models using Actor-Critic, Deep Q-Learning, and Tabular Q-Learning. These models 

are tested using the 12 ISPD contest benchmarks and evaluated by incorporating them into GPlace3.0, a cutting-edge analytic FPGA 

placement tool. Their findings reveal that when compared to the algorithmic-based detailed placer in GPlace3.0, the models exhibit total 

runtime savings between 2x and 3.5x with equivalent QoR. 

    To forecast congestion hotspots, S. Liu et al. [14] provide a fully convolutional network model in this study. To obtain a more route-
friendly result, we next integrate this prediction model into the DREAM Place placement engine. The 

experimental results using ISPD2015 benchmarks demonstrate that our suggested technique, when compared to the state-of-the-art, can 

reduce congestion rate by up to 9.05% and routed wirelength by 5.30% due to the improved accuracy of the prediction model.  

  Yao Lai et al. [15] have proposed a MaskPlace, an RL-based placement approach that learns position, wirelength, and view information. 

It facilitates the model's effective and efficient operation without constricting the search space. They create a direct incentive function 

based on real-world examples and achieve satisfying outcomes for all important parameters. This effort can speed up placement and 

prevent module overlaps that aren't wanted. 

  By equating the analytical placement problem to the process of training a neural network, Y. Lin et al. [16] have provided a 

revolutionary GPU-accelerated placement framework called DREAM Place. DREAM Place, which is built upon the widely used deep 

learning toolkit PyTorch, can outperform the state-of-the-art multithreaded placer RePlAce in terms of global placement speed without 

sacrificing quality by about 40%. 

  By completing a series of trials and utilizing convolutional neural networks to extract spatial data from various locations, Lei Deng et 

al. [17] a reinforcement-learning-based technique to automatically optimize core placement using deep deterministic policy gradient. 

The proposed method, according to experimental results, increases throughput by 1.99 and reduces latency by 50.5% when compared 

to naive sequential placement; when compared to simulated annealing, which is a useful technique for approximating the global optima 

in a very large search space, our method increases throughput by 1.22 and decreases latency by 18.6%. 

   A. Mirhoseini et al. [18] their approach can learn from the past and get better over time at producing ideal locations for chip blocks 

that haven’t been seen before, especially as it trains over more chip blocks. The agent is trained to place the nodes of a chip network 

onto a chip canvas in order to achieve these results. They formulate placement as a reinforcement learning (RL) problem. The supervised 

task of predicting placement quality serves as the foundation for their reinforcement learning (RL) policy, allowing it to generalize to 

unseen blocks. They were able to create rich feature embeddings of the input netlists by creating a neural architecture that can precisely 

predict reward across a wide range of netlists and their placements. Then, in order to facilitate transfer learning, they employ this 

architecture as the encoder of their policy and value networks. Their goal is to reduce PPA (power, performance, and area), and they 

demonstrate it in less than six hours. 

   Gandhi et al. [19] new methods of routing have been provided in the Alpha-Router and Alpha-PD-Router programmers. Without 

utilizing any external optimization algorithms, these frameworks develop the optimization function autonomously. The reduction of 

running time and memory usage when routing each benchmark is a benefit of employing the RL-based design. After a single training 

session with the data generated by the RL algorithm, these routing tools will be able to produce results. Therefore, no outside data is 

needed. A modest 5X5 grid circuit with three nets has been the subject of experiments to demonstrate the effectiveness of this model as 

a proof of concept. NNET parameters have been discovered experimentally as the first contribution. The performance of the Tick Tack 

Toe game settings influenced by AlphaGo Zero and the Alpha-router has been compared. It is demonstrated that parameters found with 

Alpha-router provide more wins as the difficulty of pin placement increases. With Alpha-PD-second Router's contribution, 99 test cases 

and 116 DRCs out of 177 DRCs are resolved in 51.6 seconds. 

  At order to fix the short violation in the routing stage, a routing model named Alpha-PD-Router is provided by U. Gandhi et al. [20]. 

One of the first RL-based frameworks, Alpha-PD-Router doesn't require users to have any prior understanding of the problem 

environment or outside information for physical design. The Alpha-PD-Router is built on a two-player cooperative game model that 

was trained on a tiny circuit and, in the testing phase, successfully resolves 75 violations out of 99 instances of 2 pins net arrangements. 

They have used straightforward 2-pin net routing issues to show the viability of this self-sufficient collaborative game strategy. Their 

objective is to extend this game theory-based approach to provide superior results on real routing benchmarks. 

   A. Goldie et al. [21] have discussed deep reinforcement learning for placement optimization. Deep RL, which permits domain 

adaptation and direct optimization of non-differentiable objective functions, is a potential strategy for handling combinatorial problems. 

The difficulty of training RL rules is partly caused by the fragility of gradient updates and the high cost of reward evaluation. In this 

work, researchers introduce deep RL, describe the placement problem as an RL problem, and present methods for developing RL agents 
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that perform well. Designers forecast a shift toward more efficient RL-based domain adaptation methods, where graph neural networks 

will play a significant role in facilitating both improved sample efficiency and more optimum placements. 

  Andrew B et al. [22] have examined machine learning possibilities with an emphasis on IC physical implementation. Examples of 

applications are: (1) eliminating irrational design and modelling margins through correlation mechanisms; (2) accelerating design 

convergence through predictors of downstream flow outcomes that consider both tools and design instances; and (3) corollaries like 

optimizing the use of design resource licences and available schedule. 

 

III. COMPARATIVE PERFORMANCE OF ML IN VLSI PLACEMENT 

      Table I here, shows the study of the different Machine learning model used, the type of placement, the algorithm used, comparison 

with which technology and results of different papers reviewed above. 

 

 

Table 3.1: Study of implementing ML in Vlsi placement 
 

 

SL.no Title Machine 

learning 

model 

Type 

placement 

Algorithm 

used 

Compared 

with 

Result 

1 [1] Deep RL Placement Graph neural 

network 

Human 

design, 

Multi-Armed 

Bandit 

20min to do over all placement, 11% and 2.5% 

wirelength improvements 

 

2 [2] RL placement RS3DPlace Random 

Initialized SA 

(RandSA). 

16% improvement in overall cost function 

 

3 [3] Deep RL placement Proximal Policy 

Optimization 

Manual and 

RePLACE 

Improvement in time,area, power and wirelength 

4 [4] RL Detailed 

Placement 

Monte Carlo 

Search Tree 

Manual 

procedure 

Routing violations are reduced 

5 [5] RL Placement fixed routing 

algorithm 

Mondrian 

algorithm 

improvement in wirelength 

Term1-44.46% 

2large- 22.02% 

6 [6] RL placement gradient based 

optimization 

technique 

DREAMPlace Effective improvement in timings 

7 [7] RL placement BP algorithm BP algorithm Time optimization 

8 [8] RL placement pre-routing 

timing prediction 

approach 

commercial 

pre-routing 

timing 

estimation 

largely reduce the pessimism and improve the 

accuracy of pre-routing prediction 

9 [9] Deep RL placement Graph neural 

network 

Greedy 

algorithm 

Improvement in timings 

10 [10] RL Detailed 

Placement 

SVM and 

Refinement 

Placement 

VDA placer short violations is reduced 

11 [11] RL Placement MOPPO fixed-

preference 

PPO 

best improvement in training 

12 [12] Incremental 

RL 

Placement policy relaxation 

and importance 

weighting 

Reacher, 

Swimmer, 

Hopper, and 

HalfCheetah 

faster adaptation to various dynamic 

environments than the baselines. 

13 [13] RL Detailed 

Placement 

Tabular Q-

Learning, Deep 

Q-Learning, and 

Actor-Critic. 

DOISM total runtime improvements between 2x to 3.5x 

and similar QoR 

14 [14] Deep RL Global 

placement 

fully 

convolutional 

network model (a 

routability-

driven placer) 

NTUplace4dr, 

DREAMPlace 

9.05% reduction in congestion rate and 5.30% 

reduction in routed wirelength 

15 [15] RL Placement MaskPlace GraphPlace it achieves 60%- 90% wirelength reduction and 

guarantees zero overlaps. 

16 [16] Deep RL Global 

placement 

DREAMPlace RePlAce around 40× speedup 
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IV. CONCLUSION 

     This paper mainly focuses on different machine learning methods for VLSI placement. A detailed review of how RL has been 

implemented VLSI placement   is shown. It comprehends many algorithms which helps it better placements where the machine learns on 

its own without much human intervention. Also, the major goal in physical design placement is to add RL algorithms in order to increase 

its efficiency but to accomplish that, there is also a requirement. This paper can serve as a reference for future research purposes regarding 
RL implementation in the VLSI placement. 

. 
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17 [17] RL placement DDPG Simulated 

anneling 

achieves 1.99× increase in throughput and 50.5% 

reduction in latency 

18 [18] Deep RL placement Policy Network 

Architecture 

Simulated 

anneling and 

RePIAce 

PPA optimization ,6hours to complete placement 

19 [19] RL Placement MCTS AlphaGo Zero 116 DRC’s out of 177 drc’s are resolved in 99 test 

cases in 51.6 secs. 

20 [20] RL placement Alpha-PD-

Router 

A-star 

algorithm 

75 violations in 99 cases of 2 pins net 

arrangements in the testing phase. Took 3hrs 

21 [21] Deep RL Placement Policy gradient 

optimization 

GNN Efficient placement 
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